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In this paper we consider the boundary layer that forms on the sloping walls of a
rotating container (notably a conical container), filled with a stratified fluid, when
flow conditions are changed abruptly from some initial (uniform) state. The structure
of the solution valid away from the cone apex is derived, and it is shown that a
similarity-type solution is appropriate. This system, which is inherently nonlinear in
nature, is solved numerically for several flow regimes, and the results reveal a number
of interesting and diverse features.

In one case, a steady state is attained at large times inside the boundary layer.
In a second case, a finite-time singularity occurs, which is fully analysed. A third
scenario involves a double boundary-layer structure developing at large times, most
significantly including an outer region that grows in thickness as the square-root of
time.

We also consider directly the nonlinear fully steady solutions to the problem, and
map out in parameter space the likely ultimate flow behaviour. Intriguingly, we find
cases where, when the rotation rate of the container is equal to that of the main
body of the fluid, an alternative nonlinear state is preferred, rather than the trivial
(uniform) solution.

Finally, utilizing Laplace transforms, we re-investigate the linear initial-value prob-
lem for small differential spin-up studied by MacCready & Rhines (1991), recovering
the growing-layer solution they found. However, in contrast to earlier work, we
find a critical value of the buoyancy parameter beyond which the solution grows
exponentially in time, consistent with our nonlinear results.

1. Introduction and formulation
Unsteady adjustments to new conditions in various geophysical settings take place

in ways that are dependent on the character of the layers bounding the region of
interest. Greenspan & Howard (1963) have described how such adjustments occur
in a homogeneous rotating fluid: spin-up, or other adjustment, is achieved over a
time scale of order h/(νΩ)1/2, where ν is the kinematic viscosity coefficient, Ω is the
rotation rate of the frame of reference and h is some vertical scale of the container.
(Although such a scale is important for analysis of spin-up, it is not essential for the
analysis of the boundary layer.) On the other hand, when stratification is present, a
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Figure 1. Geometrical configuration for the flow.

series of papers (see Walin 1969 and also Spence, Foster & Davies 1992 for a brief
review and some new results) confirm that the unsteady adjustments occur over a
much longer time scale, namely a diffusive scale. All these results are for containers
without sloping walls.

Because there is a component of buoyancy along a solid boundary whose normal is
not vertical, the character of any boundary layers is altered dramatically if the walls
are sloping. Thorpe (1987) has obtained a (linearized) solution for a steady sloping-
wall boundary layer, which can apparently be fitted into an overall steady-state
solution under very special circumstances only. MacCready & Rhines (1991), in the
case of a planar wall, have shown that for a general situation such a boundary layer
does not develop towards a steady state for long times. Hence, spin-up of rotating
stratified fluids in containers with sloping bounding walls will be quite different from
similar unsteady problems in containers for which walls are horizontal and vertical.

In this paper, we explore further the unsteady nature of the boundary layer on
a sloping wall, confirming and extending what was found by MacCready & Rhines
(1991), but adding some details to the understanding of the double-structured nature
of the boundary layer, resolving the question of the relevance of the Thorpe (1987)
solution. In particular, we study the boundary layer on the conical surface of a
container of stratified fluid, as shown in figure 1. We determine in some detail the
character of the boundary-layer solutions in the nonlinear regime, when changes in
the rotation rate are large (the previous work in this area has focused on the linear
regime, corresponding to small changes in rotation rate).

In this first instance, it is simplest to work in an inertial (non-rotating) frame of
reference, in spherical polar coordinates. Let (vr, vθ, vφ) be velocity components in the
(r, θ?, φ) directions, where θ? is the polar angle, and φ is azimuthal (see figure 1). The
density is decomposed in the form ρo + ρ̄(z) + ρ′, where |ρ̄|, |ρ′| � ρo. MacCready &
Rhines (1991) write B = gρ′/ρo, where ρ′ is the baroclinic density perturbation on the
linear stratification, ρo is a reference density and g is gravity. Here, it is convenient
to use a dimensionless version of their B, namely BMR/(Ω

2h) ≡ B. Making lengths
dimensionless with a characteristic scale of the container, say h, let the boundary-layer

coordinate θ be defined by θ? − (π/2− α) ≡ (ν/Ωh2)
1/2
θ, where α is the angle of the

sloping wall relative to the horizontal. The velocity components are dimensionless
with respect to Ω h. Boussinesq equations, under a boundary-layer approximation on
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this sloping wall, then become
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In these equations, vθ has been scaled in the usual way for a boundary-layer approxi-
mation and the pressure, p, is that from the outer flow, since the θ-direction equation
indicates that pressure is unchanged across the layer. A Burger number is written
here as S ≡ N2/Ω2, where N = [−(g/ρo)(∂ρ̄/∂z)]

1/2 is the Brunt frequency, which
is assumed to be constant. Clearly the time has been scaled with Ω−1, and σ is the
Schmidt number, which is of the order of 1000 for a solution of salt in water.

These equations are to be solved subject to some initial conditions, some pre-
scribed edge pressure gradient, and appropriate boundary conditions on the velocity
components, which in our case are

vr = 0, vθ = 0, vφ = rω(t) on θ = 0, (1.6)

where ω is the prescribed angular velocity of the wall, different from the initial
angular velocity of the fluid Ω. Requiring that the net flux of density (salinity, in this
case) to the wall is zero, a condition appropriate to attempting to describe laboratory
results, leads to the final condition on θ = 0,

1

r

∂B

∂θ
= −S cos αE1/2, where E ≡ ν

Ωh2
, (1.7)

E being the Ekman number, which will be assumed to be small throughout this paper.
It is interesting to note that, in regard to an asymptotic expansion of the solution in
powers of the Ekman number, this latter boundary condition is less important than
the dynamical condition, for ω − Ω = O(1).

In the case α ≡ 0, the equations completely decouple, so that the velocity boundary
layer is independent of the buoyancy layer. The steady velocity-layer solution for
a spin-up from rest (ω = 1, vφedge = 0) is, of course, due to von Kármán (1921).
The corresponding steady solution for a spin-down to rest (ω = 0, vφedge = r) is
due to Bödewadt (1940). Bodonyi (1978) suggested, after an analysis based upon
a computational initial-value problem, that both the von Kármán and Bödewadt
solutions approach their respective steady states after long times. We shall discuss
the unsteady Bödewadt problem briefly in the final section of this paper, §8. There is
no indication in Bodonyi’s, or predecessors’ work (see Bodonyi 1978 for a discussion)
of either continuously growing solutions or the finite-time breakdown described later
in this paper. Interestingly however, Bodonyi & Stewartson (1977) did find a finite-
time breakdown of the initial-value problem for a counter-rotating situation, but the
scalings involved are quite different from those found in this work.

The outline of the paper is as follows. In §2 we derive the boundary-layer equations
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relevant for r � E1/2, obtaining numerical solutions to the self-similar set in §3, and
further discussing the ultimate behaviour of the solutions in §4. In §5 we describe
the likely extent, in parameter space, of the different flow regimes. In §6 the limit
of large Schmidt number (σ) is considered. In §7 we return to the linearized version
similar to that considered by MacCready & Rhines (1991), reviewing a few details
from their paper, and clarifying the relevance of the Thorpe (1987) solution discussed
briefly above. We also find confirmation of one of the important features of the
solution parameter space discussed in §5 when considering the linearized solution.
Our conclusions are given in §8.

2. The flow away from the apex
We use the spherical polar coordinate system and non-dimensionalization defined

in the previous section. We suppose that at time t = 0− the flow is in some
initial state, and at t = 0+, an abrupt change is introduced into the flow, such as
an instantaneous change in the rotation rate of the fluid container (the particular
situation we concentrate on in this paper, although other impulsive changes are also
acceptable).

On account of the rotational nature of the container walls, reflected in condition
(1.6), we expect that if r � E1/2 (and we take E � 1 throughout) a self-similar
solution exists of the form

vφ = rŴ (Θ, t) + . . . , (2.1)

where Θ is a scaled and shifted θ-coordinate. Now, a sensible balancing of terms
leads to the important scaling

Θ = rθ = O(1), (2.2)

together with

vr = rÛ(Θ, t) + . . . , (2.3)

vθ = V̂ (Θ, t)−ΘÛ(Θ, t) + . . . , (2.4)

p = r2P̂ (t) + . . . , (2.5)

B = rB̂(Θ, t) + . . . . (2.6)

The additional term in the vθ-expansion leads to ‘tidier’ resulting equations, whilst
not influencing the boundary conditions. The continuity equation (1.1), to leading
order in r, leads to

2Û + V̂ Θ = 0, (2.7)

whilst the momentum equations and the equation of density transport, (1.2)–(1.4),
lead to

∂Û

∂t
+ Û2 + V̂ ÛΘ − Ŵ 2 = −2P̂ + ÛΘΘ − B̂ sin α, (2.8)

∂Ŵ

∂t
+ 2ÛŴ + V̂ ŴΘ = ŴΘΘ, (2.9)

∂B̂

∂t
+ V̂ B̂Θ − S sin αÛ + ÛB̂ =

1

σ
B̂ΘΘ, (2.10)

noting that

∂P̂

∂Θ
= 0. (2.11)
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Since we propose to solve an initial-boundary-value problem, throughout all the
differing cases discussed in the subsequent sections of this paper, we will take the
boundary conditions at the wall to be given by those derivable from (1.6) and (1.7),
therefore

Ŵ = 1, Û = 0, V̂ =
∂V̂

∂Θ
=
∂B̂

∂Θ
= 0 on Θ = 0 for t > 0, (2.12)

where we have assumed the rotation rate of the container at t = 0+ is utilized in
the non-dimensionalization process, thus making ω in (1.6) identically unity. The
condition on B̂Θ arises because this quantity is in fact O(E1/2/r), and is negligible to
leading order if r � E1/2. As Θ → −∞

Û → 0, Ŵ → Ŵ e, B̂ → B̂e =
Ŵ 2

e − 2P̂

sin α
, (2.13)

where Ŵ e denotes the outer edge value of Ŵ , and P̂ is the pressure gradient
coefficient. The latter condition arises as a result of taking the limit of (2.8) as
Θ → −∞. Here we have implicitly relaxed the condition that B̂ → 0 as Θ → −∞
(cf. Thorpe 1987; MacCready & Rhines 1991) in order to investigate a wider class
of solutions to the boundary-layer equations; there appears no reason inherent in
the boundary-layer formulation for supposing that B̂ = 0 at the outer edge of the
boundary layer. Non-zero B̂e corresponds to the existence of an interior density
perturbation; we hasten to point out, however, that such vanishing of B̂ at the layer
edge is likely the proper condition for analysing the spin-up from rest problem.

The number of parameters in the problem may be reduced by two in the following
way. If we write

B∗ = 2P̂ + B̂ sin α, (2.14)

S∗ = S sin2 α+ 2P̂ , (2.15)

then (2.7) and (2.9) remain unchanged, and (2.8) and (2.10) become

∂Û

∂t
+ Û2 + V̂ ÛΘ − Ŵ 2 = ÛΘΘ − B∗, (2.16)

∂B∗

∂t
+ V̂B∗Θ − S∗Û + ÛB∗ =

1

σ
B∗ΘΘ. (2.17)

Under this transformation, the boundary conditions (2.12) and (2.13) become

Ŵ = 1, Û = 0, V̂ = 0,
∂B∗

∂Θ
= 0 on Θ = 0, t > 0, (2.18)

and

Û → 0, Ŵ → Ŵ e, B∗ → B∗e = Ŵ 2
e as Θ → −∞. (2.19)

This system is formally the same as (2.7)–(2.10), (2.12), (2.13), but with P̂ = 0 and
α = π/2. With this change of variable, the solutions to the boundary-layer equations
are characterized by just three independent parameters: a buoyancy parameter, or
‘Burger number’, S ∗; an edge-to-surface velocity ratio, Ŵ e; and the Prandtl (or
Schmidt) number, σ. In this paper we explore the dependence of the solutions on
these three quantities, with the restrictions S∗ > 0, Ŵ e > 0. Note that S∗ = Ŵ 2

e

corresponds to the non-stratified case, attained by formally taking S → 0, B̂ → 0.
Throughout the analysis, we will suppose that at t = 0− the fluid in the boundary

layer takes the conditions at the edge and that the wall itself moves with the speed
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of the fluid; all problems discussed herein involve an impulsive change in the wall
velocity at t = 0+. Hence

Û = 0, V̂ = 0, B∗ = B∗e , Ŵ = Ŵ e for all Θ at t = 0− . (2.20)

The impulsive nature of the boundary conditions at t = 0+ must lead to a singular
solution at t = 0, with, in particular, the formation of a sublayer, investigated below.

Short-time behaviour

Let us consider the nature of the solution of the system (2.7), (2.9), (2.16)–(2.19) as
t → 0. Inspection of the system immediately suggests that Θ = O(t1/2) is the key
(inner) scale. The nature of the azimuthal velocity on the wall also demands that
Ŵ = O(1), whilst the governing equations demand that B∗ = O(1), V̂ = O(t3/2) on
this scale.

We therefore write

Ŵ = W̄ (η) + . . . , (2.21)

B∗ = B̄(η) + . . . , (2.22)

V̂ = t3/2V̄ (η) + . . . , (2.23)

with

η = Θ/t1/2. (2.24)

Substitution of the above into (2.7), (2.9), (2.16)–(2.19) and taking leading-order terms
in t, leads to the following system:

σB̄ηη + 1
2
ηB̄η = 0, (2.25)

W̄ηη + 1
2
ηW̄η = 0, (2.26)

V̄ ηηη + 1
2
ηV̄ ηη − V̄ η − 2W̄ 2 + 2B̄ = 0. (2.27)

The boundary conditions reduce to

B̄η = V̄ η = V̄ = 0, W̄ = 1 on η = 0, (2.28)

together with

W̄ → Ω, B̄ → B̄−, V̄ → 1
2
η2V̂ ΘΘ(Θ = 0, t = 0−) as η → −∞, (2.29)

where

B̄− = B̂(0, 0−), (2.30)

and

Ω = Ŵ (0, 0−). (2.31)

Consequently we see

Ŵ =
1− Ω
π1/2

∫ η

0

e−η
2/4dη + 1, (2.32)

B̄ = B̂−, (2.33)

whilst the solution of (2.27) is not stated so simply, but is nonetheless straightforward
to evaluate (at least numerically). The outer solution, namely that for Θ = O(1),
takes the form

Ŵ = W0(Θ) + t1/2W1(Θ) + . . . , (2.34)
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Figure 2. Temporal development of B∗(Θ = 0) and −ŴΘ(Θ = 0), pure spin-up case

(Ŵ e = B̂e = 0, S∗ = 0.5).

V̂ = V0(Θ) + t1/2V1(Θ) + . . . , (2.35)

B∗ = B0(Θ) + t1/2B1(Θ) + . . . , (2.36)

where W0, V0, B0 denote the values of Ŵ , V̂ , B̂ at t = 0−. The solution for W1, V1, B1

depends on W0, V0,W0 and is routine, and will not be considered here.
In the following section, we present some numerical results that reveal a number

of interesting phenomena.

3. Numerical results
Two numerical schemes, one explicit in t (first-order time accurate), the other

implicit in t (second-order time accurate), both using a central-difference scheme in
Θ (second-order accurate) were implemented to solve the system (2.7), (2.9), (2.16)–
(2.19). There are a variety of subclasses to the problem, and we consider a number of
these (which illustrate several diverse characteristics) in turn. Note that in all cases
considered in this paper, unless otherwise stated (as in §6 and §7, for example), we
have chosen σ = 1. We find that there are three distinct long-time states for spin-up
or spin-down of the container, depending on the relative sizes of S∗, Ŵ e and σ. A
typical result for each case is given below.

(i) Steady state

We consider first an example of a spin-up from rest problem; the initial conditions
are as indicated in (2.20), and boundary conditions are described by (2.18) and (2.19)
with

Ŵ e = 0, B∗e = 0, S∗ = 1
2
. (3.1)
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Figure 3. Profiles of (a) B∗, and (b) Ŵ , pure spin-up case (Ŵ e = B̂e = 0, S∗ = 0.5).

The temporal development of B∗(0, t) and ŴΘ(0, t) in this case is shown in figure 2. It
is quite clear that both the above quantities asymptote to a steady limit as t increases.
This is confirmed by the distributions of B∗(Θ) and Ŵ (Θ) at selected values of t
(taken at equal intervals), shown in figures 3(a) and 3(b) respectively. Consequently,
the ultimate structure of the flow would appear to be merely the system (2.7), (2.9),
(2.16)–(2.19), with the time-derivative terms omitted.

In the following examples we consider cases for which the rotational speed of
the conical wall changes abruptly, at t = 0, from Ŵ e to unity, which might involve
either spin-up or spin-down. Other initial and boundary values are as indicated in
(2.18)–(2.20), and in particular,

Ŵ e > 0, (3.2)

B∗e = Ŵ 2
e . (3.3)

(ii) Finite-time singularity

Consider first spin-down from an initial state (Ŵ e > 1), with S∗ = 1
2
. Results for

B∗(0, t) and ŴΘ(0, t) for the particular choice Ŵ e = 1.5, are shown in figure 4.
Intriguingly it appears that both of these quantities exhibit rapid growth, indicating
the existence of a singularity, at some finite time, so therefore no steady state is
achieved. This behaviour is suggestive of a catastrophic breakdown of the boundary
layer, presumably linked to some form of eruption. The nature of this singularity is
analysed in detail in §4.2 below. We surmise that the breakdown is caused by the
general retardation of the boundary layer, coupled with buoyancy effects.

(iii) Growing boundary layer

A third scenario is possible, as shown in a second spin-down example: for Ŵ e = 1.5,
S∗ = 2.75, results for B∗(0, t) and ŴΘ(0, t) are shown in figure 5. Although these
results suggest steady values are approached as t → ∞ (with ŴΘ(0, t) → 0), figures
6(a) and 6(b), which show distributions of B∗(Θ, t) and Ŵ (Θ, t), present a contrasting
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Figure 5. Temporal development of B∗(Θ = 0) and −ŴΘ(Θ = 0), S∗ = 2.75, Ŵ e = 1.5.

picture. It appears that a thickening of the boundary layer is occurring, rather than
a fully steady state being approached as time increases.

Numerous other examples were computed by the authors (in the range Ŵ e > 0),
and all calculations fell into one of the categories described above. The detailed
structure of each of these three distinct t→∞ behaviours is given in the next section.
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4. Mathematical description of the ultimate behaviour of the flow
From the sample results of the previous section, there are three distinct possibilities

for the terminal state of the flow. The first of these, the attainment of a true steady
state, appears straightforward, as pointed out previously. However the other two
cases require some investigation, namely the case in which a growing boundary layer
occurs and the case for which a catastrophic failure of the boundary-layer solution
arises. We deal with these possible scenarios below. In all of the analysis of this
section, we take σ = O(1); we consider the case of extreme values of σ in §6.

4.1. Growing boundary layer

From the results in §3, we observed the following two crucial trends under certain
flow conditions: (a) a steady state is achieved in the immediate vicinity of Θ = 0,
but, (b), in an outer zone of the boundary layer there is continuing growth of the
boundary-layer thickness with time. Therefore, we look for a double structure to the
boundary layer.

Consider first the outer region, for which we introduce again the variable (2.24),
η = Θt−1/2 = O(1), where in general

Ŵ = W̄ (η) + . . . , (4.1)

V̂ = t−1/2V̄ (η) + . . . , (4.2)

B∗ = B̄(η) + . . . . (4.3)

The resulting system is then

W̄ 2 = B̄, (4.4)

W̄ηη = − 1
2
ηW̄η − V̄ ηW̄ + V̄ W̄η, (4.5)

1

σ
B̄ηη = − 1

2
ηB̄η − 1

2
V̄ ηB̄ + V̄ B̄η + 1

2
S∗V̄ η. (4.6)

The appropriate boundary conditions are

W̄ = 1, V̄ = V̄ 0 = constant on η = 0, (4.7)
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together with the conditions

Ū → 0, W̄ → Ŵ e, B̄ → Ŵ 2
e for η → −∞. (4.8)

On account of (4.4) and (4.7), we must have B̄(η = 0) = 1, so that the fourth
condition in (2.18) is not satisfied. Hence, there is a need for an inner layer, described
by Θ = O(1); on this scale, the solution develops in the following manner:

B∗ = B0 + t−1/2B1(Θ) + . . . , (4.9)

Ŵ = 1 + t−1/2W1(Θ) + . . . , (4.10)

Û = t−1/2U1(Θ) + . . . , (4.11)

V̂ = t−1/2V1(Θ) + . . . , (4.12)

where

B0 = 1. (4.13)

The leading-order governing equations are then

− 2W1 = U1ΘΘ − B1, (4.14)

2U1 = W1ΘΘ, (4.15)

− S∗U1 + B0U1 =
1

σ
B1ΘΘ, (4.16)

2U1 + V1Θ = 0, (4.17)

together with

U1(0) = V1(0) = W1(0) = BΘ(0) = 0, (4.18)

and, to match with the outer layer,

U1 → 0, W1 ∼ W̄η(0)Θ, B1 ∼ B̄η(0)Θ as Θ → −∞. (4.19)

We note that 2W̄η(0) = B̄η(0). Equations (4.14)–(4.19) may now be solved in a
straightforward manner to yield

U1 =
2λB̄η(0)

σ(B0 − S∗)
sin(λΘ)eλΘ, (4.20)

B1 = B̄η(0)

{
Θ − cos(λΘ)eλΘ

λ
+

4

λσ(B0 − S∗)

}
, (4.21)

V1 =
2B̄η(0)

σ(B0 − S∗)
{

eλΘ cos(λΘ)− eλΘ sin(λΘ)− 1
}
, (4.22)

where λ4 = 1− 1
4
σ(B0 − S∗); W1 then follows from (4.14).

These inner-layer solutions, in particular (4.22), enable us to close the outer problem,
(4.4)–(4.8). We take the limit of (4.22) as Θ → −∞, to give

V̄ 0 = − 2B̄η(0)

σ(B0 − S∗)
, (4.23)

which, by linking V̄ (0) to B̄η(0) is sufficient to uniquely determine the solution. The
η = O(1) computation was carried out using a fourth-order shooting method, coupled
with Newton iteration. Figure 7 shows a comparison of the asymptotic value of B̄(η)
with the scaled fully numerical solution, B∗(Θt−1/2), for the specific case Ŵ e = 1.5,
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Figure 7. Comparison of B∗(Θt1/2) with B̄(η): Ŵ e = 1.5, σ = 1, S∗ = 2.75.

σ = 1, S∗ = 2.75 (at t = 150, 300, 600). We clearly see the fully numerical solution
approaching the asymptotic state, in a satisfactory manner. It should be noted that
this solution is qualitatively similar to that found by MacCready & Rhines (1991).

4.2. Nature of the finite-time breakdown

The nature of the finite-time breakdown, found to occur in some regions of (S∗, Ŵ e)
space, is of particular interest since it would play a very significant role in the global
spin-up or spin-down of the fluid in such a container. Specifically a sensible balancing
of terms within the governing equations leads to a new inner-scale dependency, given
by η̃ = Θ/(t0 − t)1/2 as t → t0, the time at breakdown. This balancing also suggests
the following solution development on the η̃ = O(1) scale:

Û = (t0 − t)−1Û1(η̃) + . . . , (4.24)

B∗ = (t0 − t)−2B̂1(η̃) + . . . , (4.25)

Ŵ = (t0 − t)−1Ŵ1(η̃) + . . . , (4.26)

V̂ = (t0 − t)−1/2V̂ 1(η̃) + . . . . (4.27)

The resulting system is then

Û1 + 1
2
η̃Û1η̃ + Û2

1 + V̂ 1Û1η̃ − Ŵ 2
1 = Û1η̃η̃ − B̂1, (4.28)

Ŵ 1 + 1
2
η̃Ŵ 1η̃ + 2Û1Ŵ 1 + V̂ 1Ŵ 1η̃ = Ŵ 1η̃η̃ , (4.29)

2B̂1 + 1
2
η̃B̂1η̃ + V̂ 1B̂1η̃ + Û1B̂1 =

1

σ
B̂1η̃η̃ , (4.30)

2Û1 + V̂ 1η̃ = 0, (4.31)

with boundary conditions

Ŵ 1 = 1, Û1 = V̂ 1 = B̂1η̃ = 0 on η̃ = 0. (4.32)
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As η̃ → −∞, the only meaningful conditions are that

Û1 = O(η̃−2), Ŵ 1 = O(η̃−2), B̂1 = O(η̃−4), V̂ 1 = O(1). (4.33)

There is a still thinner inner scale, given by η = O(t0 − t), where the leading-
order Ŵ term becomes O(1), in order to satisfy the no-slip condition on the conical
surface; however, this region is entirely passive. There is additionally an outer region,
Θ = O(1), in which the solution develops in the following manner:

Û = U∗1 (Θ) + (t0 − t)1/2U∗2 (Θ) + . . . , (4.34)

V̂ = (t0 − t)−1/2V ∗0 + V ∗1 (Θ) + (t0 − t)1/2V ∗2 (Θ) + . . . , (4.35)

Ŵ = W ∗
1 (Θ) + (t0 − t)1/2W ∗

2 (Θ) + . . . , (4.36)

B∗ = B∗1(Θ) + (t0 − t)1/2B∗2(Θ) + . . . , (4.37)

where

V ∗0 = V̂ (η̃ → −∞) = constant. (4.38)

We can determine nothing about the nature of (U∗1 , V
∗
1 ,W

∗
1 , B

∗
1), which must reflect the

history of the problem, and may therefore only be determined by the full numerical
solution. The O((t0 − t)1/2) terms are determined to be

U∗2 = 2V ∗0U
∗
1Θ, (4.39)

W ∗
2 = 2V ∗0W

∗
1Θ, (4.40)

B∗2 = 2V ∗0B
∗
1Θ. (4.41)

The key problem is then the solution of (4.28)–(4.33), which is in fact a nonlinear eigen-
value problem. Solution of this system was achieved by means of a finite-difference
algorithm, including Newton iteration to force the correct boundary conditions on
η̃ = 0. At first it was difficult to obtain non-trivial solutions of this system, but ulti-
mately a (scaled) solution from the fully numerical approach was used as an ‘initial
guess’, and the algorithm then worked well. Figures 8(a) and 8(b) show a comparison
of our asymptotic profile for B̂1(η̃) and V̂ 1(η̃) respectively, with scaled fully numerical
solutions just prior to breakdown (for the case σ = 1, Ŵ e = 2.0, S ∗ = 0.5). There is
good agreement between the two sets of results, adding credence to the asymptotic
approach.

5. An overview of parameter space

There must clearly be boundaries in an (S∗, Ŵ e)-space that separate the three
classes of ultimate behaviour, i.e. (i) the steady state, (ii) the finite-time singularity
and (iii) the growing boundary-layer scenario.

It is easy, computationally, to differentiate case (ii) from the others, but the
distinction between (i) and (iii) is more difficult to discern. However, a series of
numerical investigations categorically revealed that in (S∗, Ŵ e)-space the boundary
between (i) and (ii) is Ŵ e = 1 for S∗ 6 1, whilst the boundary between (ii) and (iii)
is the curve S∗ = Ŵ 2

e for Ŵ e > 1. In Ŵ e < 1, the boundary between (i) and (iii) is
more complicated, and is found to be dependent on the value of σ. We denote the
functional dependence of this latter boundary by S∗crit(Ŵ e).

In order to facilitate the determination of the boundary between the flow regimes
(i) and (iii), a fully steady computer code (based on (2.7), (2.9), (2.16)–(2.19) with
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the acceleration terms omitted) was used, employing a second-order-accurate, finite-
difference scheme in Θ, with Newton iteration to treat the nonlinearity of the problem.
The results of this numerical approach prompted a further asymptotic description in
the region of S∗crit. We can introduce an expansion analogous to that of the growing
boundary-layer analysis (§4.1); here, a perturbation away from S∗crit,

S∗ = S∗crit + δ , (5.1)

leads to the following expansions:

Û = δU1(Θ) + . . . , (5.2)

V̂ = δV1(Θ) + . . . , (5.3)

Ŵ = 1 + δW1(Θ) + . . . , (5.4)

B∗ = 1 + δB1(Θ) + . . . , (5.5)

in an O(1) layer near the boundary. In this region we obtain a linear set of equations
in the form of (4.14)–(4.17) but with {B0, S

∗} replaced by {1, S∗crit} and the boundary
conditions (4.18). Solution of this inner problem shows that, as Θ → −∞,

U1 → 0 , V1 → γ , W1 ∼ γΘ[λ4 − 1] , (5.6)

where γ is a constant and λ is defined by

λ4 = 1
4
[4− σ(1− S∗crit)] . (5.7)

The results for |Θ| � 1, coupled with (5.2)–(5.5) suggest an outer layer,

Θ̃ = δΘ = O(1) , (5.8)

in which the appropriate expansions are

Û = δ2Ũ1(Θ̃) + . . . , (5.9)

V̂ = δṼ1(Θ̃) + . . . , (5.10)
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Figure 9. Different flow regimes, σ = 1.

Ŵ = W̃1(Θ̃) + . . . , (5.11)

B∗ = B̃1(Θ̃) + . . . . (5.12)

The governing equations in this region are of the form (4.4)–(4.6) but without terms
of the form η∂/∂η, and with {V̄ , W̄ , B̄, S∗} replaced by {Ṽ1, W̃1, B̃1, S

∗
crit}. The resulting

system can be reduced to a third-order problem, by eliminating Ũ1 and B̃1, with
boundary conditions W̃1(0) = 1, W̃ ′

1(0) = γ[λ4 − 1], Ṽ1(0) = γ, where γ can be set
arbitrarily to unity, corresponding to the redefinition

Ṽ1 new =
Ṽ1

γ
, Θ̃new = γΘ̃ = γδΘ . (5.13)

This outer problem can now be solved with a simple shooting method to determine
S∗crit(Ŵe). Matching the above asymptotics to the final states obtained from the
unsteady problem, in the steady-state region (i), determines γ to be negative and, for
an exponentially decaying solution to the outer problem to exist, forces δ < 0 (so
that S ∗ < S∗crit and 0 > Θ̃ > −∞ is the appropriate solution domain). As S∗ increases,
the stable, steady solutions cannot be continued above S ∗ = S∗crit, because 0 6 Θ̃ < ∞
becomes the appropriate domain. The unsteady problem then evolves to a growing
boundary-layer state with a similar double-layer structure.

The results of our computations are displayed in the regime diagram, figure 9,
which is computed for the particular case σ = 1. Steady-state solutions exist in
the lightly shaded region, S ∗ < S∗crit(Ŵ e) for Ŵ e < Ŵ crit, where Ŵ crit > 1 is a

constant found to be dependent on σ. The other shaded zone, given by S∗ < Ŵ 2
e

and Ŵ e > 1, corresponds to parameter sets for which a finite-time singularity
occurs, case (ii). The remainder of the diagram, unshaded, corresponds to situation
(iii), which is the growing boundary-layer region. We find that in some regions of
parameter space where steady-state solutions exist, growing-boundary-layer solutions
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Figure 10. Non-trivial profiles, S ∗ = 0.5, σ = 1, Ŵ e = 1.

are simultaneously possible, but these solutions were never attained by our unsteady
initial-value computations.

Intriguingly, for Ŵ e = 1, S∗ < 1, although a trivial solution exists in this regime
(Ŵ = 1, B∗ = 1, Û = V̂ = 0), this solution was generally not attained by the steady
algorithm; instead, profiles of the type shown in figure 10 (for the particular case
S∗ = 1

2
, σ = 1) were obtained. Additionally, it was found that steady solutions for

S∗ < 1 were possible, for 1 < Ŵ e < Ŵ crit, even though the unsteady computations
generally led to finite-time singularities in this regime. One note of caution worth
mentioning is that in the above discussion we have tacitly assumed that the upper
boundary of the steady-state solution (S∗crit(Ŵ e), for Ŵ e < 1 in figure 9) corresponds
to the lower boundary of the unsteady boundary-layer solution. We believe this to be
the case.

The point Ŵ e = S∗ = 1 is of some interest, representing what appears to be a
triple point in the neighbourhood of which all three classes of flow behaviour can be
observed.

6. Large values of σ
As noted in our introduction, in a number of practical situations the Prandtl

(or Schmidt) number is large: in particular, for laboratory experiments involving a
solution of salt in water, σ ≈ 1000. In this section we consider the limit of large
values of σ. In figure 11 we show the temporal development for the case S∗ = 1

2
,

Ŵ e = 0 for σ = 1, 25, 200, 1000. This is a spin-up from rest case, for which, as
previously discussed, the long-time solution is steady for σ = O(1). Here too, all σ
cases approach a steady state.

We now examine the solutions of the equations by asymptotic means, for σ � 1.
Figure 11 suggests that B∗(Θ = 0) grows as σ increases, whilst ŴΘ(Θ = 0) becomes
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Figure 11. Temporal development for S ∗ = 0.5, Ŵ e = 0, with σ as indicated.

independent of σ in this limit. Guided by these observations, we write

B∗ = B̂∗(θ̂, t̂) + . . . , (6.1)

Û = σ−1/3κθ̂ + . . . , (6.2)

V̂ = −σ−2/3κθ̂2 + . . . , (6.3)

Ŵ = 1 + σ−1/3κ1θ̂ + . . . , (6.4)

θ̂ = σ1/3Θ, (6.5)

t̂ = σ−1/3t, (6.6)

where κ and κ1 are constants. Substitution of this asymptotic expansion into (2.7),
(2.9), (2.16) and (2.17) leads to the following equation for B̂∗:

∂B̂∗

∂t̂
− κθ̂2 ∂B̂

∗

∂θ̂
− S∗κθ̂ + κθ̂B̂∗ =

∂2B̂∗

∂θ̂2
, (6.7)

with B̂∗ → S∗ as θ̂ → −∞ and B̂∗
θ̂
|θ̂=0 = 0. What we have is typical of high-Prandtl-

number boundary layers: a thin buoyancy layer, in which the velocity components
are Taylor-series expansions from a thicker velocity boundary layer, which involves a
velocity variation with only weak changes in B∗.

In the outer, velocity boundary layer, Θ = O(1) and all quantities are O(1), and are
in fact determined through the steady equations, with conditions Û = V̂ = 0, Ŵ =
1, B∗ = S∗ on Θ = 0 and with edge conditions given by (2.19). The quantities κ and
κ1 which appear in the expressions (6.2)–(6.4) are then determined from the solution
in this steady outer layer.

The above analysis is confirmed by figure 11, which reveals that the flow de-
velopment for ŴΘ(Θ = 0) is almost invariant with σ, although B∗(Θ = 0) grows
markedly with σ. Additionally, steady-state wall values of B∗ take considerably
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longer to achieve than do the corresponding values of ŴΘ(Θ = 0), consistent with
the asymptotic description above.

Overall we found that the types of flow behaviour for σ = 1 are mirrored in the
σ � 1 results; in particular, the (S∗, Ŵ e) parameter space is divided into zones similar
to those shown in figure 9 for σ = 1.

7. Linearized solution
Here, we return to the problem studied by MacCready & Rhines (1991), namely the

linearised version of (1.1)–(1.7) for ω only slightly different from unity. The approach
to the linearized problem in this section is to use asymptotic methods on the exact
Laplace transform, in order to obtain a complete picture of the long-time evolution
of the boundary layer. The reasons for this approach are twofold: first, we will fill
in some missing elements in the prior study (MacCready & Rhines 1991), in order
to be sure that the flow picture is complete; second, to provide some insight into
solutions in the immediate neighbourhood of Ŵ e = 1, which we know from §5 is an
area of interest within the parameter space of figure 9. It is convenient in this case to
return to a frame of reference rotating rigidly at angular speed Ω, so now the velocity
components (u, v,−w) are perturbations of (vr, vθ, vφ) away from the rigid rotation,
and the notation is consistent with that of MacCready & Rhines (1991). The quantity
z is a boundary-layer coordinate given by −rθ, in the conical case. Since continuity
now de-couples from the others, equations (1.2)–(1.5) become

∂u

∂t
− 2 cos α(w − we) =

∂2u

∂z2
− sin α(B − Be), (7.1)

∂w

∂t
+ 2 cos αu =

∂2w

∂z2
, (7.2)

∂B

∂t
− S sin αu =

1

σ

∂2B

∂z2
, (7.3)

where we have replaced the radial pressure gradient with terms involving edge values
of B, w in the usual way. We assume that the initial fluid state is given by u = 0,
w ≡ we, B ≡ Be, and at t = 0 the wall is impulsively changed to a speed w = wb,
and simultaneously the buoyancy-induced ‘slope current’ starts to develop, due to
imposing (7.3). The initial conditions are not very important, since we are principally
interested in the long-time solutions of these equations, which will be applicable to
constructing solutions to a global spin-up problem. The boundary conditions are
stated a few lines below, in Laplace-transformed form.

It is convenient to make a series of variable changes in order to simplify the algebra
in the subsequent analysis. Hence, we redefine the boundary-layer coordinate by
z = (2 cos α)−1/2ζ and the time variable by t = (2 cos α)−1T . Let the buoyancy also be
rewritten as B = 2 cot αB̂. This transformation generates a set of partial differential
equations in (ζ, T ) identical to (7.1)–(7.3), but with all factors of 2 removed, all
trigonometric functions set to 1 and a new Burger number, S̃ ≡ S tan2 α/4, replacing
the S in (7.3). This ‘S ’ is identical to the Burger number used by MacCready &
Rhines (1991), and our azimuthal velocity component w is v in their paper.

To proceed to a time-dependent solution of these transformed equations, we write

u = ũ, v = ṽ, w = we + w̃, B̂ = B̂e + B̃. (7.4)

Although it is possible to solve these equations in an ad hoc fashion, it seems best,
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in order to not miss any details, to use a Laplace transform technique in time, T .
Letting L denote the usual Laplace transformation operator, it is easy to verify that
the solution of the transformed system can be written as

L{ũ} = C1e
−λ1ζ + C2e

−λ2ζ + C3e
−λ3ζ , (7.5)

L{w̃} = − C1

s− λ2
1

e−λ1ζ − C2

s− λ2
2

e−λ2ζ − C3

s− λ2
3

e−λ3ζ , (7.6)

L{B̃} =
S̃C1

s− λ2
1/σ

e−λ1ζ +
S̃C2

s− λ2
2/σ

e−λ2ζ +
S̃C3

s− λ2
3/σ

e−λ3ζ , (7.7)

where s is the Laplace-domain complex variable. The quantities {λi} are the three
solutions, with positive real part, of the sixth-degree polynomial

(s− λ2)2

(
s− λ2

σ

)
+ s(1 + S̃ )− λ2

(
S̃ +

1

σ

)
= 0. (7.8)

The boundary conditions stated in the general case (see (1.6) and (1.7)) become

L{ũ} = 0, L{w̃} = −we − wb
s

,

∂L{B̃}
∂ζ

=
AS̃

s
at ζ = 0,

A ≡ (2 cos αE)1/2 cot α.

 (7.9)

Application of these conditions gives the three simultaneous equations for the quan-
tities {Ci}; one simply relates C3 = −C1 − C2; the others may be put in a more
convenient form by writing Ki ≡ Ci(λi − λ3), and are

λ1 + λ3

s− λ2
1

λ2 + λ3

s− λ2
2

s+ λ1λ3/σ

s− λ2
1/σ

s+ λ2λ3/σ

s− λ2
2/σ

K = Q, (7.10)

where K = (K1, K2)
T, and the vector Q is given by

Q =
1

s

(
(s− λ2

3)(we − wb)
−(s− λ2

3/σ)A

)
. (7.11)

Equation (7.10) may be solved by Cramer’s rule; the determinant of the matrix in
(7.10) is

∆=
N(λ2 − λ1)

(s− λ2
1)(s− λ2

2)(s− λ2
1/σ)(s− λ2

2/σ)
,

N =
λ2

3

σ

[
s2 − s(λ2

1 + λ2
2) + λ1λ2

(
λ1λ2

σ
− s
(

1− 1

σ

))]
−λ3s

(
1− 1

σ

)
(λ1 + λ2) +

s2

σ
(λ2

1 + λ2
2 + λ1λ2)− s3 −

s

σ
λ2

1λ
2
2 − s2λ1λ2.


(7.12)

Clearly, exact inversion of these transforms is not possible, but it is not necessary
since, in the context of spin-up applications, we are principally interested in large
times, T � 1. So, we may examine the functions {Ci, λi} to determine the long-time
behaviour of solutions to (7.1)–(7.3). In particular, any singularities of the transforms



252 P. W. Duck, M. R. Foster and R. E. Hewitt

(7.5)–(7.7) in Re(s) > 0 will lead to secular growth in time. It appears, from a careful
examination of the roots to (7.8), that there are no singularities in the right half-plane,
at least for S̃ > 0, which is assumed here. In §7.3, we will show a connection between
these solutions and certain special solutions of the nonlinear problems of §§3–5; it
will be seen that S̃ may be negative, and therefore the question of root location must
be revisited. For now however, for the purposes of comparison with the previous
linearized analyses (Thorpe 1987; MacCready & Rhines 1991), we shall take S̃ > 0
and for this case there are no roots of (7.8) in Re(s) > 0.

Hence, the behaviour of the transforms near the imaginary axis in the s-plane
will determine the long-time behaviour. The general inversion contour in the s-plane
may be deformed about any such singularities, with the legs of the paths going far
into the left half of the plane. Obviously the origin itself is of crucial importance to
the long-time behaviour, but on the other hand, depending on their strength, some
singularities on Re(s) = 0 may produce time-periodic components of the long-time
solution.

7.1. Inverse structure near s = 0

To consider first the behaviour of the transforms of ũ, w̃, B̃ in the neighbourhood
of the origin in the complex s-plane, we need the behaviour of the roots to (7.8) as
s→ 0,

λ1,2 = (1± i)γ + O(s), γ ≡ ((1 + S̃σ)/2)1/4, (7.13)

λ3 ∼ βs1/2 + O(s3/2(σ − 1)), β ≡
(

1 + S̃

1/σ + S̃

)1/2

. (7.14)

With these approximations for {λ1, λ2, λ3}, the determinant ∆ may be found to be

∆ ∼ − iσs

2γ3

[(
β2

σ
− 1

)
− βs1/2(σ − 1)

2γ3
+ O(s)

]
. (7.15)

Then, (7.10) may be solved to give the behaviour of {C1, C2, C3} in the neighbourhood
of s = 0, namely

C1 ∼ −C2 ∼ −
iγ

sσ

[
−A+ β(we − wb)s1/2

1− β2

1− β2/σ
+ O(s)

]
,

C3 ∼ (1− β2)(we − wb +
A

γσ
) + O(s1/2).

 (7.16)

These expressions for {C1, C2, C3} are valid only in the immediate neighbourhood
of s = 0, failing in most of Re(s) < 0. Differences between these transforms and
the exact expressions will lead to vanishingly small effects as T → ∞, provided
that no other poles or branch points lie at or near Re(s) = 0. We return to this
question below, but for now, based on (7.13), (7.14) and (7.16), we invert (7.5)–(7.7) to
obtain

ũ ∼ −
[
Aγ

σ
+

2

(πT )1/2

γβ

σS̃
(we − wb)

]
sin(γζ)e−γζ +K(1− β2)

ζβ

2(πT 3)1/2
e−ζ

2β2/4T , (7.17)

w̃ ∼
[
A

γσ
+

1

(πT )1/2

γβ

σS̃
(we − wb)

]
cos(γζ)e−γζ −Kerfc

(
βζ

2T 1/2

)
, (7.18)
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B̃ ∼ −
[
A

γ
+

1

(πT )1/2

4β

γ tan2 α
(we − wb)

]
cos(γζ)e−γζ −Kerfc

(
βζ

2T 1/2

)
for t→∞,

(7.19)

K ≡ we − wb +
A

σγ
. (7.20)

As noted earlier, it is obvious from this solution that if the conditions of the flow
just happen to be such that K ≡ 0, then the unsteadiness disappears for long time;
putting K to zero does, in fact, precisely recover the Thorpe (1987) solution. In the
more general case however, K will not be zero, so that it is clear that the layer splits

into two distinct parts at long time: an inner layer, of width (ν/(Ω cos α))
1/2

, and an
outer layer, whose width turns out to be

cos α

(
κt?
( S̃σ + 1

1 + S̃

))1/2

,

where t? is a physical time. It is also worth noting that this long-term unsteadiness
does not arise in the velocity component up the wall, u. This outer-layer structure
was found by MacCready & Rhines (1991), who wrote down a diffusion equation
satisfied by v, and the diffusion equation had a ‘diffusion coefficient’ κ(1+σS̃ )/(1+ S̃ ).
It is evident that the error function segments of the solution are, in fact, solutions
of such an equation. However, MacCready & Rhines (1991) do not seem to have
completed the details of the double structure. Actually, to return to a point raised
above, if K ≡ 0, then it is not immediately obvious that the boundary layer reaches
a steady state. What one must do, obviously, to examine such a case is to extend the
s → 0 asymptotic expansions, (7.12) and (7.13), to the next order. In that case, C3,
for example, behaves like s1/2, leading to a contribution to w̃, for example, due to the
Laplace inversion of s−1/2 exp(−βζs1/2), which is exp(−β2ζ2/4T )/(πT )1/2, which does
in fact go to zero for all ζ as T →∞, leading to a steady state as asserted.

7.2. Inverse structure near s = ±i(1 + S̃ )1/2.

The above discussion is perhaps premature, since it remains to inquire whether there
are other contributions to the long-time behaviour of (ũ, w̃, B̃) due to additional
singularities near Re(s) = 0. Certainly poles, and in some cases branch points, will
make contributions to the long-time behaviour of the Laplace inversion; a location
on Re(s) = 0 where one, or all, of the roots of (7.8) pass through zero would seem
likely to lead to such a contribution. Note that at least some of the roots of (7.8)
vanish as s→ ±iµ, where µ ≡ (1 + S̃ )1/2. Examination of (7.8) shows that two of the
six roots vanish at both locations; the other four are finite. Only half of those roots
have a real part that is positive; hence,

and
λ3 ∼ ao(s− iµ)1/2, a2

o ≡
2σµ2

2σ + S̃ (σ + 1)
for s→ iµ,

λ3 ∼ ao(s+ iµ)1/2 for s→ −iµ,

 (7.21)

and, for the two finite roots,

λ1,2 ∼ eiπ/4

(
µ
(
1 + 1

2
σ
)
±
[(

1− 1
2
σ
)2
µ2 + S̃ (σ − 1)

]1/2
)1/2

+ O(s− iµ). (7.22)

(For s → −iµ, the asymptotic values for λ1, λ2 are the complex conjugates of those
given in (7.22).) Again, what must be done is asymptotic evaluation of the determinant,
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∆ of (7.12), followed by solution of (7.10). In this case, we find that the two constants
C1, C2 are finite at ±(1 + S̃ )1/2. Since the roots λ1, λ2 are also non-singular at those
locations, the first two terms of the expressions for L{ũ},L{w̃},L{B̃} in (7.5)–(7.7)
are analytic in this neighbourhood, and therefore contribute nothing to the long-time
approximation to the Laplace inversion. However, clearly from (7.21) λ3 ( λ̄3) has a
branch point at iµ (−iµ). After considerable algebra, we find that

C3 ∼ C3o ≡ −
( 1

2
σ)1/2

µ

ao
2

ao(S̃ + 2) + µ2(2σ)1/2

×
[
S̃A

iσ2
(λ1 + λ2)− µ

(
1 +

(
2

σ

)1/2
1

ao

)
(ve − vb)

]
for s→ iµ. (7.23)

At the conjugate location, s = −iµ, C3 ∼ C3o.
Therefore, inverting, there is a contribution to, say, ũ, which from (7.5) is

ũ(p) ∼ Re(C3oe
iµT )

aoζ

(πT 3)1/2
e−a

2
oζ

2/4T , (7.24)

and from (7.6) and (7.7),

w̃(p) ∼ −1

µ
Im(C3oe

iµT )
aoζ

(πT 3)1/2
e−a

2
oζ

2/4T , (7.25)

B̃(p) ∼ S

µ
Im(C3oe

iµT )
aoζ

(πT 3)1/2
e−a

2
oζ

2/4T . (7.26)

To summarize, the long-time behaviour of the solutions to (7.1)–(7.3) is given
by (7.17)–(7.20), apparently appended by (7.24)–(7.26). In the case of the velocity
component, w̃, for example, the O(s1/2) term in the approximation to C3, as shown
in (7.16), leads to a higher-order term in (7.18), of O(T−1/2), which is larger than the
order of w̃(p) in (7.25), which is O(T−1), for T →∞. The same argument holds for B̃.
However, for the along-slope velocity component, ũ, the last term in (7.17) is precisely
the same order as ũ(p) in (7.24). Thus, we have,

ũ ∼ ũo + ũ(p) + O(T−3/2),

w̃ ∼ w̃o + O(T−1),

B̃ ∼ B̃o + O(T−1) for T →∞,

 (7.27)

where the subscript notation ( )o refers to the solutions (7.17)–(7.20). Therefore, the
decaying periodic contributions due to the branch points at ±iµ are significant for ũ
only. In no case does the contributions from the neighbourhood of the branch points
alter the conclusions about the character of the long-time behaviour of the solutions
given in §7.1.

7.3. Relation to numerical solutions of §3.

Since in its initial state the fluid in case (i) of §3 is at rest, the linearized analysis
provides no insight into that problem; however, there is apparent relevance to the
two cases (ii) and (iii), as we shall see below.

We have discussed solutions to the self-similar boundary-layer equations (2.8)–(2.11)
with more general edge conditions than those of MacCready & Rhines (1991), which
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led to (7.1)–(7.3). Let W̃ b denote a generalized angular velocity of the boundary,
which is taken to be 1 in the solutions of §3. Then, we write

Ŵ = Ŵ e + w̃, B∗ = B∗e + 2Ŵ eB̃, Ũ = ũ, (7.28)

and alter the independent variables as

Θ = − ζ

(2Ŵ e)1/2
, t =

T

2Ŵ e

. (7.29)

With these changes of variable, substitution into (2.9), (2.16) and (2.17), and sub-
sequent linearization (by neglecting products and squares of w̃, B̃, ṽ, ũ), under the
assumption that

|Ŵ b − Ŵ e| � 1, (7.30)

we obtain the solutions (7.5)–(7.7), except that the parameter S̃ in the solution must
be replaced by

S̃ =
S∗ − Ŵ 2

e

4Ŵ e

2
. (7.31)

We know from the discussion in §5 that the parabola S∗ = Ŵ 2
e is a boundary

between growing-layer and finite-time singularity solutions. That curve crosses Ŵ e = 1
at S∗ = 1, obviously, so careful examination of the solutions here should give some
insight into that transition. That means examining the solutions (7.5)–(7.7) in the
vicinity of S̃ = 0.

Solution near S̃ = 0

There is a hint, in results (7.17)–(7.20), of some potential difficulty with the solution
at S̃ = 0 since there is an S̃ in the denominator in (7.17) and (7.18). In fact, note that
the expression (7.15) for the determinant ∆ may be rewritten as

∆ ∼ iσs(σ − 1)

2γ3

[
S̃

1 + σS̃
+
βs1/2

2γ3

]
. (7.32)

In establishing (7.17)–(7.19), we considered only the first term in the square brackets
of (7.32). However, for S̃ � 1, we note the appearance of a near-origin pole. (When
S̃ is not small, there is no such pole, since the approximate expressions in §7.1 require
that |s| � 1.) This new pole is actually on another Riemann sheet for S̃ > 0, and
hence contributes nothing to the long-time behaviour, and (7.17)–(7.19) is recovered.
On the other hand, for S̃ < 0, the pole is in Re(s) > 0: at s ≈

√
2S̃2/σ. All of this is

captured in the exact inversion of, say, (7.6), when all of (7.32) is retained,

w̃ =

[
A

γσ
(1− ek

2T erfc(kT 1/2)) +
1

σ
(we − wb)ek

2T erfc(kT 1/2)

]
cos(γζ) e−γζ

−K
[
erfc

(
βζ

2T 1/2

)
− ekβζ+ k2T erfc

(
kT 1/2 +

βζ

2T 1/2

)]
, (7.33)

where k ≡ 21/4 S̃/σ1/2. Similar expressions may be obtained for the other velocity

components and B̃. For T → ∞ with k > 0, i.e. S̃ > 0 or, equivalently, S∗ > Ŵ 2
e ,

we recover (7.18) precisely. However, for T → ∞ but for k < 0 (S∗ < Ŵ 2
e), since
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erfc(−X) = 2− erfc(X), (7.33) takes the limiting form

w̃ ∼
[
A

γσ

(
1 +

1

k(πT )1/2
− 2ek

2T

)
− we − wb

σγ

(
1

k(πT )1/2
− 2ek

2T

)]
cos(γζ)e−γζ

−K
[
erfc

(
βζ

2T 1/2

)
+

1

k(πT )1/2
e−β

2ζ/4T − 2ekβζ+k
2T

]
. (7.34)

Hence, we have an indicator in this linearized analysis of the significance of the locus
S∗ = Ŵ 2

e in figure 9 in separating growing-layer solutions from other behaviours.
Note that for S̃ ≡ 0, the origin singularity is not a pole but a branch point; for this
particular value, the temporal growth is algebraic. It is interesting to note that only
a Laplace transform procedure like this can uncover such features of the solution;
MacCready & Rhines (1991) found no evidence of this temporal breakdown because
they considered only S̃ > 0 cases.

The above linearized analysis indicates different types of solution on different sides
of the curve S∗ = Ŵ 2

e . In the region Ŵ e > 1 this is not inconsistent with the
nonlinear results, although naturally the linearized analysis cannot predict the finite-
time singularity, but rather exponential growth. For Ŵ e < 1, the situation is slightly
more subtle – although the nonlinear calculations lead to steady-state solutions (for
S∗ > S∗crit(Ŵ e)), this is not a small perturbation of the trivial solution and consequently
cannot be expected to be described by the above linearized analysis.

In terms of other issues of comparison with the numerics, for which we took
σ = 1 in many of the computations reported, we need to specialize results (7.27) for
σ ≡ 1. That requires some care. Note by (7.14) that β ≡ 1 in such a case, for all S̃
values. That means that the final term in (7.17) is identically zero, and elsewhere in
(7.17)–(7.20), β and σ should be set to 1. In the case of the ũ(p), in (7.27), note that
ao ≡ 1, and

C3o = − 1√
2

3S̃Ae−iπ/4 − (1 +
√

2)(we − wb)
1 + (1 +

√
2)µ2

for σ = 1. (7.35)

The conclusions drawn above about the appearance of the finite-time singularity
depend only weakly on σ, so the conclusion there is unchanged. Finally, we note that
there is no qualitative change in the conclusions of this section, or any results quoted,
if σ � 1 as in §6.

7.4. Significance of the A-term in K

Though equations (7.1)–(7.3) are given here for the boundary layer on a conical
surface, they are of course valid for the boundary layer over a surface of arbitrary
shape. They are in fact the equations previously obtained by MacCready & Rhines
(1991) for the boundary layer over a planar wall. Whether or not the A-term, which
represents the gravitationally driven ‘slope current’, should be retained in K , in (7.20),
is an important question. If the surface is planar, then some terms neglected in
(7.1)–(7.3) are O(E), so the presence of A in the solutions of this section is entirely
consistent, as in the discussion of MacCready & Rhines (1991). However, for a surface
with lateral curvature, in particular for the cone configuration explicitly considered
in this paper, terms neglected in (7.1)–(7.3) are O(E1/2). Therefore, inclusion of the
A-term in the solutions (7.14)–(7.17) is not self-consistent, unless in fact A is larger
than O(E1/2), namely only for very small slopes, so that the cot α-term in (7.9) is
large. Note that discarding A means that there are no steady-state components of the
boundary-layer velocity and buoyancy!
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For the conical case in particular, effects due to A must be incorporated through
construction of second-order terms in the asymptotic series. The A-terms are made
even smaller if the Schmidt number, σ, is large, as it is for a salt/water system. As
a practical consequence, therefore, in say spin-up contexts, buoyancy-driven slope–
current effects are much smaller than the boundary-layer motions due to dynamic
forcing through either ve or vb, and may therefore be ignored.

In the nonlinear solutions, valid for r � 1, the equivalent to the parameter A of
(7.9) involves an Ekman number, E, based on the length scale r rather than the length
scale h typical of the overall container geometry; thus, as r → ∞, this ‘A’ → 0, hence
we have taken ∂B/∂n = 0 throughout the large-r numerics and analysis of §§3–4.
Note that in such a case, K , from (7.20), is identically zero on the vertical line through
(1, 1) in figure 9, which corresponds to the Thorpe (1997) solution.

8. Conclusions
It has been shown that when a rotating conical container containing a viscous

stratified fluid undergoes some abrupt change in conditions (such as rotation rate),
then within the framework of the boundary-layer model, a number of diverse flow
occurrences are possible. In some cases (S∗ < S∗crit(Ŵ e), Ŵ e < 1), a truly steady state is
attained after sufficiently long times. Interestingly, there is strong evidence that under
some circumstances the ‘trivial’ state is unstable, in so far as the state of uniform
buoyancy and rotation does not (in general) seem to be attained. On this line through
the parameter space (i.e. Ŵ e = 1) a second (nonlinear) state is preferred for S∗ < 1.
In other cases (Ŵ e > 1, S∗ < Ŵ 2

e) a finite-time breakdown of the boundary-layer
equations may occur. Presumably this leads physically to an eruption of fluid, out
of the boundary layer itself; this process appears to be associated with the general
retardation of the fluid. In the remaining areas of (S∗, Ŵ e)-space, although a steady
state appears to be set up close to the vessel walls, an outer boundary layer also
forms, whose thickness grows as the square-root of time. Thus viscous effects will
eventually penetrate into the main body of the fluid, which then undergoes a change
in flow conditions (both the velocity and the density) in such a way that a steady flow
can be sustained, this change occurring over a very long (diffusive) time scale.

In the linearized case considered in §7, it is shown that generally the flow splits
into two distinct layers: one with z = O(1) and the other with z = O(T 1/2). In this
case, viscous effects must ultimately diffuse into the main core of the flow, which is
thereby modified. However, special circumstances can occur if (in the notation of
§7) K = 0, in which case such unsteadiness does not occur. In this eventuality the
effects of viscosity will be confined to the z = O(1) boundary layer, and a fully steady
solution to the problem becomes established; this corresponds to the case considered
by Thorpe (1987). We have also determined that the linearized solution, which is in
general of a quite different character from the nonlinear solutions, is valid only for
a narrow range, namely when the difference between the edge and wall azimuthal
velocity components is much smaller than E2, where E is the Ekman number for the
initial rotation.

In this paper we have deliberately restricted our attention to cases without counter-
rotation, i.e. we have only considered the region Ŵ e > 0, S∗ > 0. However, it is
well known (see Bodonyi & Stewartson 1977; Bodonyi 1978) that even non-stratified
counter-rotating flows exhibit complex flow behaviour; the effects of counter-rotation
and stratification will be the subject of further investigation.

Finally, we note that, numerically, we can find an interesting phenomenon in
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Figure 12. Temporal development for Ŵ e = 1.5, S∗ = Ŵ 2
e .

areas of the (S∗, Ŵe) parameter space that can be associated with the classical (non–
stratified) rotating disk problem. In particular, for S∗ = Ŵ 2

e and Ŵe > 1, we note that
unsteady calculations do not evolve to any of the steady-state rotating disk solutions.
Instead we obtain a solution that, after a sufficiently long time, appears to be the
appropriate steady-state solution (from the von Kármán family of similarity solutions)
with a superimposed ‘wave-packet’ part that moves out through the boundary layer
linearly with time. As illustrated in figure 12(c), the maximum amplitude of the
disturbance decays on a t1/2 scale, but the length scale also grows like t1/2, combining
to give a sustained oscillatory behaviour in the normal velocity far from the wall.
Figure 12(a) shows the evolution of the azimuthal velocity component at a specific
point in the boundary layer. Figure 12(b) shows the agreement between the large-time
limit of the unsteady solution (here taken at t = 151) and the steady-state solution
(from the von Kármán family) in a region near the wall/disk. As is seen from figure
12(c) this agreement does not hold as Θ approaches a value near to V s

∞t, where V s
∞

is the normal velocity at a point far from the wall/disk, as determined from the

appropriate steady-state solution. The frequency of the oscillation is 2Ŵe, and we
believe that it is possible to describe the large-time behaviour asymptotically, in terms
of a new variable

η∗ =
Θ − V s

∞t

t1/2
,
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but we do not attempt to do so here. This result is in contrast to those presented
by Bodonyi (1978) for the unsteady similarity equations of the Bödewadt problem.
Although, in a later linear stability analysis, Bodonyi & Ng (1984) did show that the
length scales noted above arise naturally when considering the continuum spectrum
in an initial value approach to a perturbation of the similarity solution. However, in
their stability analysis the perturbation is shown to decay algebraically. This feature
may be of importance when analysing the global spin-up problem for some classes of
flows, therefore its description is also a subject for further work.
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